
Statistical properties of high-lying chaotic eigenstates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 5509

(http://iopscience.iop.org/0305-4470/27/16/017)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 27 (1994) 5509-5523. Printed in the UK 

Statistical properties of high-lying chaotic eigenstates 
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Center for Applied Mathematics and Theoretical Physics. Univenity of Maribor, Krekova 2. 
SLO-62000 Maribor, Slovenia 

Received 7 April 1994 

Abstract We study the statistical properties of the high-lying chaotic eigenstates (200000 
and above) which are deep within the semiclassical regime. The system we are analysing 
is the billiard system inside the region defined by the quadratic (complex) conformal map of 
the unit disk as introduced by Robnik (1983). We are using Heller’s method of plane-wave 
decomposition of the numerical eigenfunclions. and perform extensive statistical analysis with 
the following conclusions: (i) the local average probability density is in excellent agreement with 
the microcmonical assumption and all statistical properties are also in excellent agreement with 
the Gaussian random model; (ii) the autocorrelation function is found to be strongly direction- 
dependent and only after averaging over all directions agrees well with Berry’s (1977) prediction: 
(iii) although the scars of unstable classical periodic orbits (in such an ergodic regime) are 
expected to exist, so far we have not found any (around the 200000th state) other Lhan a 
scar-like feature resembling the whisperinggallery modes. 

1. Introduction 

The field of quantum chaos is developing very quickly and there has been substantial 
progress in our understanbing of generic properties of eigenstates in classically non- 
inteFable and chaotic bound systems. In contrast to the theoretical description of the 
energy spectra (and of other quantal observables) where we now have a rather complete 
understanding of the spectral statistical universality classes and also of statistics in the 
transition region between integrability and ergodicity (i.e. going from Poisson to GOE‘GUE), 
we are still far from a correspondingly complete knowledge of generic and statistical 
properties of the wavefunctions. For a few recent reviews see contributions in Giannoni et 
al(1991), Gutzwiller’s book (1990), the papers in Casati et a1 (1993) and also the review 
on statistical properties of energy spectra by Robnik (1994). 

In order to understand the wavefunctions, specially in the semicIassical limit, it 
is intuitively very appealing to use the so-called principle of uniform semiclassical 
condensation (PUSC) of the Wigner functions (of the eigenstates) which is implicit in Berry 
(1977a): as h + 0 we assume that the Wigner function of a given eigenstate uniformly 
(ergodically) condenses on the classical invariant object on which the classical motion is 
ergodic and which supports the underlying quantal state. Such an object can be, for example, 
an invariant torus, a chaotic region as a proper subset of the energy surface, or the entire 
energy surface if the system has ergodic dynamics there. 

In classically integrable systems the eigenfunctions possess a lot of ordered structure 
globally and locally: applying PUSC, the average probability density in the configuration 

t E-mail address: Baowen.Li@UNI-MB.SI 
$ E-mail address: RobnikBUNI-MB.SI 

0305-4470~4/165509+15519,50 0 1994 1OP Publishing Ltd 5509 



5510 

space is seen to be determined by the projection of the corresponding quantized invariant 
torus onto the configuration space, which implies the global order. Moreover, the local 
structure is implied by the fact that the wavefunction in the semiclassical limit is locally a 
superposition of a finite number of plane waves (with the same wavenumber as determined 
by the classical momentum). 

In the opposite extreme of a classically ergodic system, Pusc predicts that the average 
probability density is determined by the microcanonical Wigner function. Its local structure 
is spanned by the superposition of infinitely many plane waves with random phases and 
equal wavenumber. The random phases might be justified by the classical ergodicity 
and this assumption, originally due to Berry (1977b), is a good starting approximation 
which immediately predicts locally the Gaussian randomness for the probability amplitude 
distribution. Berry (1977b) has also calculated the autocorrelation function of semiclassical 
chaotic (ergodic) wavefunctions, which we will discuss later on in detail. One major 
surprise in this research was Heller’s discovery (1984) of scars of unstable classical periodic 
orbits in classically ergodic systems. The scar phenomenon is, of course, a consequence 
of subtle correlations in the quantal phases. This has been analysed and discussed by 
Bogomolny (1988) and Berry (1989) in the context of the Gutzwiller periodic orbit theory. 
The insufficiency of the single-periodic-orbit theory of scars has been discussed by Prosen 
and Robnik (1993a) in a study of the transition region between integrability and chaos. 

In the generic case of a w - l i k e  system with mixed classical dynamics, the application 
of PUSC is again very useful and has great predictive power. Here the states can be classified 
as either regular (they ‘live’ on a quantized invariant torus) or irregular (they ‘live’ on a 
chaotic invariant region), quite in agreement with Percival’s (1973) speculative prediction, 
which has recently been carefully re-analysed by Prosen and Robnik (1994a). In this case 
PUSC implies asymptotic (h --t 0) statistical independence of level series (subsequences) 
associated with different regular and irregular components. This picture has been used by 
Berry and Robnik (1984) to deduce the resulting energy level statistics in  such generic 
Hamilton systems with mixed classical dynamics, especially the level spacing distribution. 
In a recent work Prosen and Robnik (1994b) have confirmed numerically the applicability 
of the Berry-Robnik theory and also explained the Brody-like behaviour (as discovered and 
described in Prosen and Robnik (1993b)) before reaching the far semiclassical limit. 

2. The definition of the billiard system and the numerical technique 

In the present paper we study the chaotic wavefunctions in the two-dimensional billiard 
system whose domain B (in the w-plane) is defined by the complex quadratic conformal 
map of the unit disk (in the z-plane), namely 

(1) 
as introduced by Robnik (1983, 1984) and further studied by Prosen and Robnik (1993b) 
(see also Hayli ef nl (1987) and Bruus and Stone (1994), Stone and Bruus (1993, 1994)). 
Following most people in the field we shall refer to it as the Robnik billiard. As the shape 
parameter h changes from 0 to A this system goes from the integrable case of the circular 
billiard continuously through a m1-like regime to an almost ergodic regime at large A, At 
A 6 i the boundary is convex and therefore the Lazutkin-like caustics and invariant tori (of 
boundary glancing orbits) exist. At A > 4 the billiard was speculated (based on numerical 
evidence in Robnik (1983)) to become ergodic, which has been disproved by Hayli et al 
(1987): close to h > there are still some stable periodic orbits surrounded by very tiny 
stability islands. On the other hand, for h = f (the cardiod billiard) the ergodicity and 
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mixing have been proved rigorously by Markarian (1993). Nevertheless, at large values of 
h, say h = 0.375 (which we study exclusively in the present paper), the numerical evidence 
does not exclude the possibility of ergodicity: if there are some tiny regions of stability, 
then they must be so small that they cannot be detected at large scales. 

We want to calculate and analyse the high-lying states far within the semiclassical 
limit, as high as the 100000th eigenfunction (of even parity which is about the 200000th 
when counting all states) and above, in the regime where the classical dynamics is almost 
completely ergodic (within the numerical resolution of the Poincark surface of section). 
As mentioned above, the latter condition is satisfied at h = 0.375. However, in order to 
reach the said high-lying eigenstates using the available supercomputer facilities we had to 
abandon the conformal mapping diagonalization technique developed by Robnik (1984) and 
further employed by Prosen and Robnik (19936). Instead we have implemented Heller’s 
method of plane-wave decomposition of the wavefunctions (for example, see Heller 199 1). 
Heller’s method enables one to go very high in the semiclassical limit (high energies) where 
we can then calculate a few consecutive levels, whereas the diagonalization method (with the 
conformal mapping technique) has the advantage of yielding many levels from the ground 
state upwards. So, if one is interested in significant statistical analysis the latter method is 
superior, whilst when studying the individual high-lying eigenstates the former method is 
the better one. 

Let us spend just a few words on the technical aspects of this difficult task, since to the 
best of OUT knowledge many crucial ingredients have not been discussed in the literature so 
far. To solve the Schrodinger equation with Dirichlet boundary conditions 

A* + E* = 0 W = 0 at the boundary (2) 
we use the superposition of plane waves with the wavevectors of the same magnitude k but 
with different directions. The wavefunction we used for the even parity is 

N 
* ( U ,  U) = x u ,  cos(kj.u + +j)cos(k,,u) 

j = l  
(3) 

where k,, = kcos@j), kjv = ksin(0,), k2 = E the eigenenergy, N the number of plane 
waves and +, are random phases drawn from the interval [O,%), assuming uniform 
distribution. and 0, = 2 j i r / N  (i.e. the direction angles of the wavevectors are chosen 
equidistantly). The ansatz (3) solves the Schrodinger equation (2) in the interior of the 
billiard region, so that we have only to satisfy the Dirichlet boundary condition. Taking the 
random phases, as we discovered, is equivalent to spreading the origins of plane waves all 
over the billiard region, and at the same time this results in reducing the CPU time by almost 
a factor of ten. For a given k we put the wavefunction equal to zero at a finite number M 
of boundary points (primary nodes) and equal to 1 at an arbitrarily chosen interior point. 
Of course, M 3 N .  This gives an inhomogeneous set of equations which can be solved by 
matrix inversion. Usually the matrix is very singular, thus the singular value decomposition 
(SVD) method has been invoked (Press et al 1986). After obtaining the coefficients aj we 
calculate the wavefunctions at other boundary points (secondary nodes). The sum of the 
squares of the wavefunction at all the secondary nodes (Heller called this sum ‘tension’) 
would ideally be zero if k2 is an eigenvalue. In practice, it is a positive number. Therefore 
the eigenvalue problem now is to find the minimum of the ‘tension’. In OUT numerical 
procedure we have looked for the zeros of the first derivative of the tension; namely the 
derivative is available analytically/explicitly from (3) once the amplitudes aj have been 
found. In fact, since the SVD method is based on finding the least-squares solution of the 
linear equations, we can choose A4 larger than N without running into the over-determination 
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problem. Indeed, this has been done with a typical choice M = { N .  It must be pointed out 
that the wavefunctions obtained in this way are not (yet) normalized, due to the arbitrary 
choice of the interior point where the value of the wavefunction has been arbitrarily set 
equal to unity. We therefore explicitly normalize these wavefunctions before embarking to 
the analysis of their statistical properties. 

The accuracy of this method, of course, depends on the number of plane waves ( N )  
and on the number of the primary nodes (M), and we have a considerable freedom in 
choosing N and M > N .  In order to reach a sufficient accuracy experience shows that 
we should take at least N = 3L/hde~,,,gtie, and M = $ N ,  where L is the perimeter of the 
billiard and h d e h g b e  is the de Broglie wavelength = 2n/k. With this choice we reach 
the double precision accuracy (sixteen digits) for all levels of integrable systems like the 
rectangular billiard (where the eigenenergies can be given trivially analytically) and the 
circular billiard, but also for the billiard BA for h < 0.2. Also, the same choice enabled 
us to calculate the IOOOOOth even-parity eigenstate and a few nearby eigenstates for our 
billiard at h = 0.375 within an accuracy of 1% of the mean level spacing (seven valid 
digits). These accuracy checks were based on very careful self-consistent checks of the 
method and also on comparison of the eigenvalues with those obtained by using Robnik's 
diagonalization method. 

The advantage of this method is that, on one band, it is very flexible for calculating the 
eigenvalues, and on the other hand, it is self-checkable: the accuracy and the reliability can 
be checked by changing the interior point and by changing N as well as M. The drawback 
of the method is that, with an unlucky choice of the interior point and an unlucky energy 
step size, some eigenstates may be-and typically are!-missed, so that the calculation 
must be repeated by using different interior points to finally collect all the levels. The Weyl 
formula (with perimeter and curvature corrections) can be used to detect the missing of 
levels (cf Bohigas 1991). A similar numerical experience has been reported in Frisk (1990). 

Baowen Li and M Robnik 

3. The wavefunctions and the probability amplitude distribution 

All the wavefunctions that we have calculated and discussed here are the even-parity 
eigenstates of the billiard BA at 1 = 0.375. In figure 1 we plot the even-parity eigenfunction 
of energy E = 625084.5, which is about the 100010th eigenstate of even parity, as 
estimated by using the Weyl formula (with perimeter and curvature corrections) 

1 + 2hZ E -  N e v e n ( E )  = - 8 (4) 

where E ( x )  is the complete elliptic integral of second kind (cf Prosen and Robnik 1993b). 
This is a good example of a chaotic quantum eigenstate, which exhibits the characteristic 

filamentary structure as noticed already by Heller etnl(1987, 1991), which is a consequence 
of the fact that in the ansatz (3) all plane waves (with random phases) have the same 
magnitude k of the wavevector. Also, as judged by the naked eye, the average probability 
density is constant only if the local averaging region is sufficiently large in units of de Broglie 
wavelength: probably we need a typical size of at least several ten wavelengths. The 
local and global average value (Yz) is theoretically expected to be equal to ] /A ,  where 
A = n(1 + 2h2) is the area of 0,. This is a direct consequence of the microcanonically 
uniform Wigner function for this eigenstate (Berry 1977, Voros 1979, Shnirelman 1979; see 
also Berry 1983), which in turn is a consequence of PUSC as explained and discussed in 
the introduction. Indeed, the theoretical value of (Y') is 0.24844, whereas the numerical 
evaluation yields 0.248 32 (after averaging over 1 145 294 grid points distributed uniformly 

1 
24 

a-- (1 + Zh)E(-&/(l+ 2h)) - 1 
2R 
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Figure 1. The probability density plot for the even-parity eigensnte with E = 625084.5, for 
I = 0.375, and with the estimated sequential number using the Weyl formula (4) equal to 
100010. The contours are ploned at ten equally spaced steps between zero and the maximum 
value. In this geometly the unit length is 126 de Broglie wavelengths. 

inside the interior of the billiard region), which can be considered as an excellent agreement. 
In table 1 we compare the theoretical values and the numerical estimates for a number of 
eigenstates to show that quite generally this agreement is very good. There we give the 
numerical estimate for all the lowest four moments of the *-distribution, namely the average 
m ,  = (q), the variance m2 = ((Y - ml)*), the skewness m3 = ((Y - ml)')/m;'' and 
the kurtosis m4 = ((Y - m,)4)/mz - 3. These experimental values are compared with the 
theoretical values of the Gaussian random model (see the introduction) which predicts 

where again, according to PUSC, U' = 1 / d  = l / (n( l  + ZA')), and ideally it should 
be equal to m2. In figures Z(u) and (6) we plot the numerical histogram for P(*) 
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Figure 2. m e  probability distribution function and cumulative distribution function of 
eigenstates (a)  E = 625084.5 (appmximateiy IOOOlOth  even-parity state), and (b) E = 
625 118.4 (approximately 100015th even-parity state) in comparison with the Gaussian random 
model (5). In the upper diagrams we show the histograms compared with he theoretical CUNe 
(S), and in the lower diagrams we show the cumulative amplitude distribution function I ( * ) .  
Three small boxed regions are displayed in the conesponding magnified windows. Here the 
difference between the lheoretical and the numerical CUNW is hardly visible since the agreement 
is so good, 
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Figure 2. Continued. 

(merely for illustrative purposes), and-more importantly-the cumulative distribution 
I(*) = j-”, P ( x )  dx which is compared with the theoretical model (5) .  The agreement is 
seen to be excellent, even i n  figure 2(b) where, as we shall see and discuss in section 5, in 
the probability density plot of the underlying wavefunction a scar-like feature is observed. 

In addition, we have estimated the significance levels of the cumulative distribution 
I(*) according to the Kolmogorov-Smirnov test (Ress et al 1986 p 472) with respect to 
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Table 1. The average. variance, skewers and kurtosis of a few eigenstates nearby the 100000th 
eigensm of even parity in comparison with theoretical values. N,,(E) is given by the Weyl 
formula (4). The s i g n i f i w e  levels o f  the KalmogomvSmimov Lest for nll cigenstates listed 
in this table are exactly one within 5 digits. 

E N d E )  Avenge VYiance Skewness Kurtosis 

625 040.6 
625058.4 
625 084.5 
625099.5 
625118.4 
625 161.9 
625 172.8 
625 182.1 

Gaussian 

100003 0,00002 
100006 o.owo1 
100010 0.00001 
100012 -0.00001 
100015 0.00001 
100022 0.00003 
100024 0.00007 
100025 0.00000 

0.0 

0.24828 
0.248 36 
0.248 32 
0.248 34 
0.248 38 
0.248 31 
0.248 39 
0.248 54 

0.248 44 - 

-0.002 11 
0.00441 

-0.001 60 
-0.001 79 

0.00460 
0.003 41 

-0.00248 
-0.001 35 

0.0 

0.11607 
0.06516 
0.06809 
0.03638 

-0.014 15 
0.02424 
0.04836 
0.03624 

0.0 

the Gaussian distribution for all eigenstates listed in table 1. It is found to be exactly 1 
within five digits. This shows again that indeed our results agree excellently with the 
theoretical prediction. 

A similar study of chaotic eigenfunctions has been published in Chuikov et al(1989), 
where even the differences between the numerical values and the Gaussian random model 
due to the finite dimensionality of the system have been seen. 

Our results are comparable to the findings of Aurich and Steiner (1993) who studied the 
chaotic wavefunctions of the quantum system whose classical counterpart is the geodesic 
motion on a compact surface of constant negative curvature, although with our numerical 
wavefunctions we are considerably farther into the semiclassical limit. So far we have not 
found any examples of scars in these high-lying states around the 100000th (however, see 
section 5). The conclusion is that scars are difficult to find since they ‘live’ on smaller and 
smaller support a s h  + 0, or E + 00, and consequently asymptotically no longer influence 
the P(Y) distribution, as further explained in section 5. 

4. The autocorrelation function of the wavefunctions 

The mean statistical properties of chaotic wavefunctions have been discussed, analysed 
and described in the previous section. However, the question of space correlations of a 
wavefunction is far from trivial. The correlations exist on different scales and their strength 
can vary substantially. For example, in figure 1 we clearly see that there is some kind 
of clustering on the scale of a few tens of de Broglie wavelengths: there are regions of 
this size with enhanced probability density, and there are also regions of this size with 
notably depleted probability density (holes). Not every stste is like that and in figure 3 
we show another chaotic even-parity eigenstate with energy E = 625 118.4, approximate 
number N ,  = 100015, again for h = 0.375. Here the above-mentioned clustering is much 
less pronounced and this property is well captured in the autocorrelation function of the 
eigenstates, as we shall see in a moment. 

The definition of the autocorrelation function of the probability amplitude of a given 
eigenstate is (Berry 1977b, 1983) 

where the local average denoted by (. . .) is taken over a sufficiently large region around 
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Figure 3. nte probability density plot for the even-parity eigenstate with E = 625 118.4, for 
1 = 0.375, and the estimated sequential number using the Weyl formula (4) equal lo 100015. 
n t e  contours are plotted at ten equally spaced steps between zero and the maximum value, In 
this geometry the unit length is 126 de Broglie wavelengths. 

p whose size is typically many de Broglie wavelengths but still smaU compared with the 
geometrical size. In our case the wavefunction is of course real, i.e. W* = W. I t  should be 
noted that the denominator in (6) is actually the Fourier transform of the Wigner functinn 
W(P,P)> 

where we have specialized to our real W case, and also two degrees of .freedom and R = 1. 
Now using the PUSC for a chaotic state following Berry (1977b) we assume that the Wigner 
function of such a classically ergodic state is microcanonical, i.e. 
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1 function C ( X . 9 )  of the eigenstate in figure I .  C(X,q) is 
plotted against ks for seven different angles of X with respect to the abscissa; here 5 = 1x1. 
The angle and the avenging ship are indicated in the upper right-hand comer of the figure. 
From ( a )  to (a) the angle goes from 0 to zl2 with an inwement of xI12. The dashed w w e  is 
the theoretic; prediction 6). namely Jo(ks), whilst the full curve denotes the numerical result. 
The local average has been Wen  on a snip of 20 x 100 de Broglie wavelengths. For a fixed ks 
about 150 WO @d points inside the ship have been used to calculate C. The reference point q 
is fixed at (0.4,O.O) which is probably sufficiently far away from the billiard boundary. 
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Figure 5, The same as figure 4, but for the ejgenstate of figure 3. 

Thus substituting (8) into the inversion of (7) and then into (6) we immediately obtain the 
special case of Berry's (1977b) result, namely 

C(X; d = Jo(ks) (9) 
where JO is the Bessel function of zero order, k2 is the eigenenergy and s is the length of 
X. So the autocorrelation function is isotropic, and we are going to check numerically the 
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Figure 6. The autocorrelation function after averaging over many directions X of the eigenstate 
in figure 1. C ( X .  q) is plolted against ks for lhree dierent averaging disb and different number 
of directions, where s = 1x1. The averaging disk in (a), (b), (c) and ( d )  has a diameter of 
200. 100, 50 and 100 de Broglie wavelengths, respectively. In (a).  (b)  and (c )  the number of 
direclions is 200, whilst in ( d )  it is 400. 

validity of this theoretical prediction. 
First we would like to check the isotropy of the autocorrelation function. To this 

end we have evaluated (6) by taking the local average on a small strip of 20 x 100 
wavelengths situated at the centre of the billiard as far as possible from the boundaries. 
The results for the wavefunctions of figure 1 and figure 3 are shown in figures 4 and 
5, correspondingly. Because of the inversion symmetry of the autocorrelation function 
with respect to X and the reflection symmetry of the wavefunctions Y with respect 
to U we can restrict ourseives to the angles within the interval [0 ,n /2] ,  and we have 
chosen the values between 0 and nJ2 in equal steps of nJ12, as indicated in the upper 
right-hand corner of the figures. 'The autocorrelation function is obviously strongly 
direction-dependent (please notice that the statistical noise is practically zero) and in 
the case of the more uniformly chaotic wavefunction of figure 3 agrees better with the 
theoretical prediction (9) than for the less chaotic eigenstate of figure 1. We believe 
that the semiclassical periodic orbit theory (see, for example, Casati et al 1993, Tbl and 
Ott 1993 and references therein) could explain the deviations from the isotropy. Our 
results agree qualitatively with Aurich and Steiner (1993) although we are considerably 
higher in the semiclassical limit (by a factor of 10 or so), and also with somewhat old 
results in McDonald and Kaufman (1988), Shapiro and Goelman (1984), Shapiro et a f  
(1988). 

It is interesting that after averaging over many directions we get a considerable 
agreement with (9). This is shown in figures 6(a)-(d) where we v"y the size of the 
averaging disk and also the number of the directions over which the average is taken. These 
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Figure 7. The same as in figure 6, but for Ule eigenstzte in figure 3 

plots are for the eigenfunction shown in figure I. Both effects are clearly visible, namely the 
increasingly better agreement with (9) as we increase the radius of the averaging disk and/or 
as we increase the number of directions. The same aspects are shown in figures 7(u)-(d) 
for the more uniformly chaotic state of figure 3. By comparing the figures 6(u) and 7(u) 
we see that in the latter plot the agreement with theory is better. 

5. Scar-like features in wavefunctions 

As we know since Heller’s (1984) discovery of scars (of unstable classical periodic orbits) 
in chaotic quantum eigenfunctions of classically ergodic systems, we do expect such scars 
to exist in all chaotic systems, but according to the single-periodic-orbit theory (Bogomolny 
1988, Berry 1989) the scar supporting region should shrink as & as h + 0, whilst 
the probability density contrast remains fixed since it is predicted to be h-independent 
(HeUer 1984). The many-orbits theory (Robnik 1989) would speculatively predict the 
h e a r  scaling of the scar area with f i  as a consequence of the interference effects. Some 
phenomenological material on this topic has been published recently in (Prosen and Robnik 
1993a). 

In this short section we would like to draw attention to an interesting scar-like feature 
ssen in figure 3: near the boundary, about ten de Broglie wavelengths away, there is a 
thin scar-like feature, which has no simple explanation, because due to the non-convexity 
of the billiard boundary there are no Lazutkin-like caustics and invariant tori and also 
no such glancing periodic orbits. The only classical object that might be relevant for 
this feature is possibly the glancing orbit which survives many bounces while going 
round the boundary until reaching the non-convexity region and flying away, becoming 
completely chaotic afterwards. We have observed a few similar features in quite a 
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few other eigenfunctions. but we cannot offer any definite theoretical explanation so far. 
However, the formalism offfered and discussed in Muller et a1 (1993) might just be right 
to quantitatively describe the role of such orbits which are recurrent in configuration space 
but not periodic. 

Baowen Li and M Robnik 

6. Discussion and conclusions 

In this paper we have calculated numerically the high-lying chaotic states in the Robnik 
billiard as high as the 200000th eigenstate and investigated their semiclassical morphology 
and their statistical properties. To achieve this we have implemented and adapted Heller’s 
method of plane-wave decomposition, which has been further developed and its accuracy 
carefully checked. Similar to other workers (for example, Aurich and Steiner 1993) we reach 
the following conclusions. In such high-lying eigenstates the scars are hardly detectable 
since so far we have not found any of them. The average probability density is globally 
in excellent agreement with the theoretical semiclassical (and classical!) prediction. The 
Gaussian random model for the local sratistical properties of the wavefunctions is generally 
excellent, in spite of the characteristic filamentary structure and the relevant clustering of 
probability density on the scale of a few tens of de Broglie wavelengths. This has been found 
by comparing the theoretical and the numerical distributions and also by the comparison 
of the lowest four moments and the evaluation of the KolmogorovSmirnov test. The 
autocorrelation function captures nicely the clustering property, and is found to be strongly 
direction-dependent in contradistinction with Berry’s (1977b) isotropic prediction, but, after 
averaging over many directions, the agreement with Berry’s theory is recovered. Finally we 
should mention that in some of the eigenstates we discovered scar-like features resembling 
the whispering-gallery modes, for which we do not have a proper theoretical explanation. 

Our current and future work deals with the systematic search for the scars and the 
analysis of their geometry and scaling properties with h. On the theoretical side the present 
paper stimulates finther work on scar theory for which we expect improvement when a 
many-orbits theory has been set up, following the suggestions in Robnik (1989). Prosen and 
Robnik (1993a). Moreover, we believe that the application of Gutzwiller’s (one) periodic 
orbit theory could explain in detail the anisotropies of the autocorrelation function. Our 
work also shows that there is still much interesting structure over the range of a few tens of 
de Broglie wavelengths in chaotic wavefunctions, which calls for a more refined statistical 
description. 

Acknowledgments 

We wish to thank Boris V Chirikov for helpful comments and relevant references. The 
financial support by the Ministry of Science and Technology of the Republic of Slovenia is 
gratefully acknowledged. 

References 

Aurich Rand Steiner F 1993 Physica 64D 185 
Beny M V 1977a Phil. T r m .  R Soc. 287 237 
-1977b J. Phys. A: Math Gen 10 2083 
-1983 Chaoiic behaviour of deterministic systems Pmc. NATO ASI Les Houches S u m e r  School ed G looss. 

-1989 Proc. R. Soc. A 423 219 
R H G Helleman ad R Stora (Amsterdam: Elsevier) p 171 



Statistical properties of high-lying chaotic eigenstates 5523 

Berry M V and Robnik M 1984 J. Phys. A: Mark Gen. 17 2413 
Bohigas 0 1991 Chaos and quantum systems Proc. NATO AS1 Les Houckes Summer School ed M-J Giannoni, 

A Voros and J Zinn-Justin (Amsterdam: Elsevier) p 87 
Bogomolny E B I988 Physlco 31D 169 
Bruus H and Stone A D 1994 Dept. Phys. Yale University Preprinr 
Casati G. Guarneri I and Smilansky U (eds) 1993 Qunnfum Chaos (Amsterdam: North-Holland) 
Chirirov B V. Izrailev F M and Shepelyansky D L 1988 Physica 33D 77 
Frisk H 1990 Nordita Preprhf 
Giannoni M-I, Voros J and Zinn-Justin ( 4 s )  1991 Chaos and Quantum System (Amsterdam: Nonh-Holland) 
Gutmiller M C 1990 Chaos in Ciassicaf and Qvanfum M e c h i c s  (New York: Springer) 
Hayli A, Dumont T, Moulin-Ollagier J and Strelcyn J M 1987 J.  Phys. A: Math. Gen 20 3237 
Heller E 1 1984 J.  Phys. Rev. Len. 53 1515 
-1991 Chaos and quantum systems Proc. NATO AS1 Les Houckes Summer School ed M-I Giannoni, A Voros 

Heiler E 1, OConnor P W and Gehlen I 1987 Phys. Rev. Len. 58 1296 
Markarian R 1993 Nonlinearity 6 819 
McDonald S W and Kaufman A N 1988 Phys. Rev. A 37 3067 
Miiller K, H6nig A and Wintgen D 1993 Phys. Rev. A 47 3593 
Percival I C I973 J, Phys. E: Af. MOL Phys. 6 L229 
Press W H, Flannay B P, Teukolsky S A and Vetterling W T 1986 NwnerinrlReciprr (Cambridge: Cambridge 

Prosen T and Robnik M 1993a J.  Phys. A: Mak.  Gen. 26 5365 
-1993b J.  Pkys. A: Mazh. Gen 26 2371 
-1994a J. Phys. A: Mark Gen. submitted 
-1994b J,  Phys. A: Mafh. Cen 27 LA59 
Rob& M 1983 J. Phys. A: Mu&, Gen. 16 3971 
-1984 J.  Pkys. A: Math. Gen. 17 1049 
-1989 Preprint Institute of Theoretical Physics, University of Califomia Santa Barban 
-1994 J. Pkys. Soc. JapanSuppl. 63 
Shapiro M and Goelman G 1984 Phys. Rev. Left. 53 1714 
Shapiro M. Ronkin J and Bmmer P 1988 Ckem Phys. Len. 148 177 
Shnirelman A L 1979 Usp. Ma. Nauk 29 181 
Stone A D and BNUS H 1993 Physica 1898 43 
Stone A D and BNUS H 1994 Su&e Science at press 
TeI T and Ott E 1993 Cham Foew (issue on chaotic scattering) 3 
Voros A 1979 Lecture Nofes in Physics 93 p 326 

and 1 ZiM-Justin (Amsterdam: Elsevier) p 547 

University Press) 


